
D
i
b

A
G

a

A
R
R
A
A

K
P
M
L
N
P

1

b
t
b
d
p
t
p
P

0
d

Journal of Pharmaceutical and Biomedical Analysis 54 (2011) 13–20

Contents lists available at ScienceDirect

Journal of Pharmaceutical and Biomedical Analysis

journa l homepage: www.e lsev ier .com/ locate / jpba

evelopment, validation and transfer of a Near Infrared method to determine
n-line the end point of a fluidised drying process for commercial production
atches of an approved oral solid dose pharmaceutical product

ntonio Peinado ∗, Jonathan Hammond, Andrew Scott
laxoSmithKline [R&D], New Frontier Science Park, Harlow CM19 5AW, UK

r t i c l e i n f o

rticle history:
eceived 3 February 2010
eceived in revised form 16 July 2010
ccepted 22 July 2010
vailable online 6 August 2010

eywords:
rocess Analytical Technology (PAT)
ethod validation

oss on drying in-line monitoring
ear Infrared (NIR)
artial Least Square (PLS)

a b s t r a c t

Pharmaceutical companies are progressively adopting and introducing the principles of Quality by Design
with the main purpose of assurance and built-in quality throughout the whole manufacturing process.
Within this framework, a Partial Least Square (PLS) model, based on Near Infrared (NIR) spectra and
humidity determinations, was built in order to determine in-line the drying end point of a fluidised bed
process. The in-process method was successfully validated following the principles described within The
International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuti-
cals for Human Use – ICH Q2 (r1) – Validation of Analytical Procedures: Text and Methodology. However,
in some aspects, the cited guidelines were not appropriate to in-process methods developed and vali-
dated exclusively with in-line samples and implemented in dynamic systems, such as drying processes.
In this work, a customized interpretation of guidelines has been adopted which provided the framework
of evidence to support a validated application.

The application has been submitted to the United States Food and Drug Administration (FDA) and The
European Medicines Agency (EMA) during applications for grant of licences. Representatives from these
Regulatory Authorities have specifically reviewed this novel application during on-site inspections, and
have subsequently approved both the product and this application.

Currently, the NIR method is implemented as a primary in-line method to control the drying end point

in real-time (to below a control limit of not greater than 1.2% w/w) for commercial production batches
of an approved, solid, oral-dose medicine.

The implementation of this in-process method allows real-time control with benefits including a reduc-
tion in operation time and labour; sample handling and waste generation; and a reduced risk to product
quality in further unit operations due to improved consistency of intermediate output at this stage. To
date, this has achieved approximately 10% savings in energy efficiency and operational time for this part

cess.
of the manufacturing pro

. Introduction

The Process Analytical Technology (PAT) guidance published
y the Food and Drug Administration (FDA) establishes a holis-
ic framework for designing, developing, analysing and controlling
oth the critical quality attributes of raw materials and interme-

iates and the critical quality parameters of the manufacturing
rocess, with the goal of ensuring final product quality. In this con-
ext, the underlying principle is that “Quality cannot be tested into
roducts; it should be built-in by Design”[1]. Throughout the Drug
roduct Development cycle, embracing the science-based PAT prin-

∗ Corresponding author.
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ciples provides understanding to support process control, enables
regulatory approval and improve manufacturing flexibility to oper-
ate within a design space.

Drying is an important operation in pharmaceutical solid oral-
dose processing. Important quality attributes such as stability,
flow properties and compressibility are all influenced by resid-
ual moisture [2]. Thus, moisture content can potentially be a
critical quality attribute. If the granules are over dried then the
action of the fluid bed dryer may cause the attrition of granules,
thus creating undesirable fines that can damage the formulation
due to hydration changes in some actives and excipients. Con-

versely, if the granules are insufficiently dried then the product
may not flow properly, which may cause problems with down-
stream processing, including product sticking to the faces of the
tablet press punches and problems with product stability during
storage.

dx.doi.org/10.1016/j.jpba.2010.07.036
http://www.sciencedirect.com/science/journal/07317085
http://www.elsevier.com/locate/jpba
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Traditionally, moisture content throughout fluid bed drying of
queous granulation has been modelled based on heat and mass
alance transfer equations [3]. However, these mechanistic mod-
ls are based on restrictive assumptions and can fail if the process
onditions are not consistent between granulation batches [4].

In the last two decades, Near Infra-Red Spectroscopy (NIRS)
as proved to offer many industrial possibilities in pharmaceutical
nalysis [5] due to its potential to measure both physical and chem-
cal properties. The NIR region of the electromagnetic spectrum
omprises the molecular vibrations (overtones and combinations
f the fundamental vibrations) of highly an harmonic bonds like
–H, N–H and, especially, O–H [6], which make it particularly suit-
ble for measuring water content in an extensive range of sample
atrices. Indeed, the measurement of water was one of the first

harmaceutical applications of NIR [7]. NIR technology is also a
ast and non-destructive technique that requires no- or minimal
nalyst intervention. Furthermore, the possibility of using it in con-
unction with fibre optic probes, which allow the non-invasive
elocalization of the measurements, render it a tool for in-line

mplementation.
NIR spectra are characterised by wide and overlapping peaks

hich are often visually difficult to interpret as they are not bond
pecific. Thus, the determination of chemical and physical proper-
ies by NIRS involves the use of multivariate calibration tools [8]
o model the property of interest. Samples that are used to con-
truct such models should encompass every source of variability in
he process that potentially influencing the properties to be mea-
ured. Frequently, under commercial production, the variability in
he process parameter is too limited and is highly correlated to
nsure adequate accuracy, robustness and precision. To overcome
his drawback, the set of samples used to build the model can be
nlarged with both synthetic laboratory samples and pilot-scale
development) samples which expand the natural process variabil-
ty [9]. Nonetheless, this approach cannot be feasibly implemented
or fluid bed drying monitoring, because the way the sample is
resented to the probe, in a fluidised bed, cannot be easily repro-
uced off-line [10]. Despite this inconvenience, NIRS has been used

n fluid bed drying monitoring, albeit that most of the applica-
ions were not fully validated [11,12,13] or were developed off-line
14,15].

This paper describes the application of the PAT principles to
he development and analytical validation of a Near Infrared (NIR)

ethod for the measurement of water content in-line during the
uid bed drying process of a drug product. Thus, this primary
ethod is currently being applied on the commercial scale to con-

rol the drying end point, which avoids the burden of sampling and
he at-line determination of moisture.

. Experimental

.1. Materials

This NIR application is used to monitor the drying stage post-
ranulation of a Novel Drug Product, formulated as a solid oral-dose
edicine—absolute percentages or ratios of amounts within the

ormulation may not be disclosed. However, the Active Pharma-
eutical Ingredient (API) comprises 60–70% of the granule, which
lso includes micro-crystalline cellulose, sodium starch glycolate,
nd povidone.

The API is a hydrochloride salt which possesses no chiral cen-

res, acyclic double bonds or hydroxyl groups. This is manufactured
ithin a GlaxoSmithKline Primary Production facility.

All excipients were purchased from commercial suppliers as
omplying with the current edition of the European Pharmacopoeia
Ph. Eur.).
d Biomedical Analysis 54 (2011) 13–20

2.2. Process description

All the data analysed herein were collected from batches man-
ufactured at full commercial scale in a 300 l Glatt fluid bed dryer
(FBD). The drying process starts after completion of the high-shear
wet granulation process. Once the granule transfer is complete, the
inlet air temperature is set to 60 ◦C and the inlet air volume is main-
tained within 1400–2300 m3/h. The drying time is variable, but is
approximately 30 min, and is deemed complete when the moisture
content of the solid is not greater than 1.5% (w/w) as measured
off-line using a weight loss on drying balance (LOD).

Full commercial scale batches were grouped into seven differ-
ent campaigns during which process operating conditions and raw
materials were varied in order to gain process understanding and
knowledge.

2.3. Spectroscopic data

An ABB – Fourier Transform Process Analyzer (ABB-FTPA2000-
260) Near Infrared spectrometer, with thermo electrically cooled,
InGaAs detectors and equipped with a diffuse reflectance probe;
was used to record in-line NIR data throughout the drying process.
A dedicated computer system monitors and controls the spectrom-
eter during operation and is used to retrieve, analyse and store the
generated data. This computer includes the FTSW100 Process Con-
trol Software and the SIMCA QP Multivariate Prediction Software.

Spectra were recorded in-line over the range 1178–2075 nm.
Each spectrum was the average of 32 scans. A reference spectrum
was obtained at the beginning of each batch using a 99% reflectance
Spectralon® standard.

An interface/adaptor plate was manufactured to facilitate the
insertion of the diffuse reflectance probe into the fluid bed dryer.
The plate also includes a sample port and sample thief. The design
and location of the adaptor plate allows the recording of NIR spectra
throughout the entire drying process and the extraction of thieved
samples (<10 g) at a similar position to the NIR probe.

For this system, the height of the probe with respect to the base
of the dryer bowl and the angle of insertion of the probe in the
dryer are critical to obtain both representative spectra of the drying
process and also to avoid deposition on the sapphire window of
the NIR probe. The NIR probe was inserted into the product bowl
at a height of approximately 50 cm from the bottom plate to the
window, pointing downward at an angle of approximately 30◦ from
horizontal, and protruding approximately 20 cm into the bowl.

2.4. Reference data – loss on drying (LOD) determinations

Thieved samples were collected periodically throughout the
drying process. The measurement of water content, LOD% (w/w),
for each sample was determined by the drying to constant weight
method using a Computrac Moisture Analyzer (type Max1000). The
method uses approximately 3–5 g of sample evenly distributed on
a pre-weighed disposable balance dish. The product was then dried
at 90 ◦C until a change in weight of less than 0.01 g was registered
during 24 consecutive seconds. In order to determine the Standard
Error of Laboratory (SEL), triplicate determinations were performed
on selected samples.

2.5. Model building

Prior to model development, both NIR data and LOD% (w/w) val-

ues were trended and visually inspected to exclude gross-outliers
and anomalous samples using in-house scripts built in Matlab
R2008b (Mathwork).

Commercial Software SIMCA-P+ v.11 (Umetrics) was used to
build a Partial Least Square (PLS) model using the LOD% deter-
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ig. 1. NIR spectral evolution for a typical batch during the fluid bed drying process.

ination as dependent variable and the NIR spectra ascribed to
he moisture measurements as predictive variables. Both types of
ariables were centred before modelling.

The PLS model was built with 24 samples from 10 different
atches. These batches were manufactured according to a design
f experiments plan expanding the process variability within
he design space. The model was externally and independently
alidated with 47 samples obtained from 29 additional batches
anufactured during 5 clinical campaigns. In-house procedures

ased on international guidelines [16,17] were followed in order
o validate the model.

Since NIR spectra were acquired from a continuously evolving
ystem in the diffuse reflectance mode, significant variations in
he spectral baseline were detected. Several combinations of pre-
rocessing filters and wavelength selection were studied in order
o minimize the distorting effect of the scattering and to enhance
he signal related to the moisture content. Standard Normal Vari-
te (SNV) in the band between 1854 nm and 2075 nm was finally
elected as the spectral pre-processing treatment.

Every LOD% (w/w) value predicted by the model also has a
ModX [18] value associated. The DModX or Distance to Model

s a diagnostic test that provides information on the spectral simi-
arity between the spectrum of the sample under scrutiny and the
et of spectra used to build the multivariate model. The smaller the
ModX, the greater the similarity of the sample to those included in

he calibration set. Conversely, samples with a high DModX may be
onsidered as potential outliers and thus the associated predicted
OD value cannot be relied upon to decide whether the end point
as been reached.

. Results

.1. NIR spectra

Changes in physical and chemical attributes during drying can
e monitored using NIR as illustrated in Fig. 1. The plot shows all

he spectra collected during a drying operation under SNV pre-
rocessing. The colorimetric legend is related to the drying time

ndicating blue to red for the beginning to end of the drying process
espectively. The spectral evolution is characterised by the strong
bsorption around 1940 nm, which corresponds to the combination
Fig. 2. Loading plot for the 1st PLS component. Maximum observed at approxi-
mately 1942 nm.

between the fundamental stretching and deformation vibration of
the O–H bond [19]. Around this region, the water signal decreases
progressively throughout the drying process.

Another characteristic zone of the spectra is the first overtone
region for the CH, CH2 and CH3 around 1600–1800 nm. Here, the
signal increases as the drying progresses. Finally, the spectral evo-
lution around the band at 1440 nm, which is the 1st overtone of the
hydroxylic bond, is similar to that for 1940 nm.

3.2. Model calibration

The PLS model for the prediction of LOD% was built with
24 samples. The optimum number of PLS components, selected
by cross-validation, was just one, explaining 97.66% of the LOD-
variance.

Fig. 2 shows the loading value associated with the 1st PLS
components. Although loadings and coefficient vectors must be
cautiously interpreted [20], the shape of the loading plot resembles
the absorbance band for water and presents an absolute maxi-
mum at 1942 nm, which is concordant with the absorption for the
hydroxylic bond for water.

Table 1 (upper) shows the statistics for the relationship between
the LOD values predicted by the PLS model and the LOD values
determined in the laboratory. The slope and intercept of the regres-
sion line are 1 and 0 respectively, matching the desired values;
whilst the coefficient of determination (R2) is 0.98. The Root Mean
Square Error of Calibration (RMSEC) is 0.10% (w/w); this value is
comparable to the Standard Error of Laboratory which is equal to
0.09% (w/w).

Finally, the residuals of the PLS model shown in a normal proba-
bility plot in Fig. 3, follow a trend similar to the normal distribution
line (in red). This indicates that the variability not explained by
the model is just a random perturbation. The statistics presented
shows the suitability and goodness of fit of the PLS to model the
water content.

3.3. Method validation

In order to demonstrate the suitability of the NIR model for the

quantification of moisture content in terms of LOD% during the dry-
ing process of these granules, an independent set of 47 samples was
used to validate the model.

Current guidelines [16,17] suggest that the number of samples
available should be a split of 2/3 for calibration and 1/3 for valida-
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Table 1
Statistics for the relationship between the LOD% (w/w) predicted by the PLS model and the laboratory reference values for the samples in the calibration set (upper table)
and for the samples in the external validation set (lower table).

Calibration

Number of samples 24

Parameter Coefficients Standard error Confident limit

Lower 95% Upper 95%

Intercept 0.00 0.05 −0.10 0.10
Slope 1.00 0.03 0.93 1.07
R2 = 0.98 Bias = 0.00% (w/w) RMSEC = 0.10% (w/w)

External validation

Number of samples 47

Parameter Coefficients Standard error Confident limit

Lower 95% Upper 95%
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sin between both vectors, which is equal to 0.9898.

Consequently, it can be stated that the PLS model is based on
a NIR region highly related to free water, presenting a loading
vector highly related to the hydroxylic band and showing an abso-
Intercept −0.03 0.07
Slope 1.01 0.05
R2 = 0.90 Bias = −

ion. However, for this application a more conservative approach
as taken to demonstrate suitable model performance. Therefore,

he proportion of samples was reversed here (1/3 calibration and
/3 validation); allowing 24 samples for calibration and 47 sam-
les for a more thorough independent validation. The following
nalytical properties were evaluated.

.3.1. Range
The range of the model was determined by the LOD% (w/w) val-

es of the extreme samples (lower and upper) in the calibration
et, which was 0.62% (w/w) and 2.64% (w/w), respectively. The NIR
odel is only valid within the range of the method. Any use out-

ide of the range is purely extrapolatory. All the samples used to
alidate the model were within the range of the method.

.3.2. Specificity
Specificity is the ability to assess unequivocally the analyte in

he presence of components which may be expected to be present.
As stated in Section 1, one of the features of NIRS is the overlap-
ing peaks. Thus, the specificity of any analytical methods based
n NIRS can only be achieved with the help of proper multivari-
te tools. The following three facts support the demonstration of
pecificity of the NIR model to predict LOD% (w/w):

ig. 3. Normal Probability Plot of residuals. The line represents the normal distri-
ution.
−0.18 0.12
0.91 1.11

(w/w) RMSEP = 0.17% (w/w)

1. Fundamental spectroscopic principles: The wavelength range
selected to build the model, from 1854 nm to 2075 nm, includes
the combination band for water with a maximum around
1940 nm

2. Spectral difference: The NIR spectra recorded presents a char-
acteristic relative maximum around 1940 nm. Fig. 4 shows the
spectra corresponding to the samples with extreme LOD values
0.62% (w/w) (red) and 2.64% (w/w) (blue), which represent the
range of the method. The spectrum resulting from the subtrac-
tion of these extreme spectra is shown in black. As can be seen,
the highest difference between the extreme spectra is found at
1942 nm.

3. Modelling perspective: The loading plot for the 1st (and only) PLS
component of the model also present an absolute maximum at
1942 nm. The spectrum of differences and the first loading vector
are highly similar, presenting a similarity index, measured as the
Fig. 4. NIR spectra in the calibration set with extreme values of LOD% (w/w) (red
for the lowest content and blue for the highest) along with the spectrum resulting
from the subtraction of both (black) (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.).
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Table 2
Demonstration of accuracy.

Set Method Number of samples Mean Variance F-test (0.05) t-test (0.05)

Tab. Exp. p Tab. Exp. p
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Calibration NIR-PLS 24 1.38 0.
Laboratory 24 1.38 0.

Validation NIR-PLS 47 1.38 0.
Laboratory 47 1.35 0.

ute maximum at the wavelength with the highest sensitivity to
ater.

.3.3. Linearity of the method
The linearity of the method was demonstrated by establishing

he correlation between the LOD values predicted by the model and
hose determined by the reference method.

Fig. 5 shows the scatter plots of the LOD values determined in
he laboratory against the LOD values predicted by the NIR model
or both the calibration (blue filled circle) and validation set (black
ircle). The line of best fit for both sets are also shown but can-
ot be clearly distinguished as they overlap. The properties of the
egression line for the samples in the validation set are shown in
he lower part of Table 1. The confidence interval for a significance
evel of 0.05 for the intercept and the slope include zero and unity,
espectively.

.3.4. Accuracy
To establish the accuracy of the NIR method a paired t-test

or independent samples by variables was performed between the
OD% (w/w) values predicted by the model and those determined
n the laboratory. The analysis was carried out both for samples in
he calibration and in the validation set.

Before the paired t-test, the variance of both methods was com-
ared using an F-test to assess whether they differed significantly.
he results obtained are included in Table 2. Considering the F-test
or a significance level of 0.05, the experimental statistic is lower
han the critical, thus it can be concluded that there are no signif-
cant differences between the standard deviation of the methods,
oth for the calibration and validation sets.
Equally, t-experimental is also lower than t-critical for a signi-
cation level of 0.05 for both the calibration and validation sets.
inally the SEL, RMSEC and RMSEP values are respectively 0.09%,
.10% and 0.17%, which are all of a comparable magnitude. They
ere considered acceptable from a manufacturing perspective.

Fig. 5. Regression lines for the samples in the calibration and validation sets.
2.014 1.024 0.955 2.013 0.000 1.000

1.632 1.130 0.680 1.986 −0.210 0.834

Consequently, it was concluded that the differences between the
LOD% (w/w) values predicted by the NIR-PLS model and the LOD%
(w/w) values determined in the laboratory are not significant or, in
other words, that the accuracy of both methods was comparable.

3.3.5. Robustness
A risk assessment for the robustness and ruggedness of the

analytical method for granule LOD% was performed by a panel of
multidisciplinary experts. Table 3 includes the range for the qual-
ity attributes (QA) of the API and the critical Process Parameters
(PP) potentially affecting the performance of the NIR model. Ide-
ally, robustness is built-in by selecting samples in the calibration
encompassing variability across the range for all the critical PP and
QA.

Principal Component Analysis (PCA) based on the values of the
critical QA and PP for the samples in the calibration and validation
sets were performed to assess robustness. Score and contribution
plots were useful to identify clusters of samples and to explain their
differences or similarities. As a way of an example, Fig. 6 shows the
score plot for the first two principal components using the QA as
variables. Each point represents a granulation batch. The labels C
and V stand for calibration and validation. The legend is related
to the bulk density of the API. Batches manufactured with API of
low bulk density are plotted with squares, whilst batches with mid
and high bulk density are shown with circles and triangles, respec-
tively. Samples in the calibration set encompass the whole range
for bulk density. The RMSEP for the batches with low, mid and high
API bulk density were 0.14% (w/w), 0.18% (w/w) and 0.17% (w/w)
respectively, which can be considered similar to the global model

RMSEP (0.17% (w/w)). Hence robustness against the bulk density
of the API was assessed, and similar results were obtained for the
critical QA and PP listed in Table 3.

Fig. 6. Score plot for the first 2 Principal Components based on the critical quality
attribute values of the batches of API. C and V stand for Calibration and Validation.
Legend colour based on Bulk density.
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Table 3
Range for the critical quality attributes of the API and the process parameters.

API quality attributes Range Drying process parameters Range

Min. Max. Min. Max.

Chemical properties (% (w/w)) Water 0.30 0.68 Inlet air temperature (◦C) 59.3 61.0
Residual solvents 0.03 0.18 Product bed temperature (◦C) 27.2 48.0

Particle size distribution (microns) X10 0.85 1.14 Outlet air temperature (◦C) 23.8 45.7
X50 2.22 2.90 Inlet air humidity (% RH) 3.8 12.2
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point could have been determined with precision.
In spite of the demonstration of high repeatability of the method,

but due to the lack of guidelines in that respect, a safeguard clause
was established for this application to ensure that the batch would
be released in compliance with the specification: “The drying pro-
X90 4.62
Density (g/mL) Initial 0.17

Tapped 0.28
Bulk 0.21

.3.6. Precision
Precision is defined as the closeness of agreement between a

eries of measurements under the prescribed conditions. Precision
ay be considered at two main levels: repeatability and repro-

ucibility.

.3.6.1. Repeatability. Repeatability expresses the precision under
he same operating conditions over a short interval of time. This
efinition is more suitable for off-line/at-line methods where
he analysis conditions can be easily controlled and reproduced.
owever, it is not readily applicable to in-line methods devel-
ped for dynamic evolving systems, e.g. a drying process. This is
ecause the process conditions cannot be kept constant between
onsecutive measurements. Taking samples from the process to
erform replicate NIR measurements in, an off-line way, is also
ot realistic since the sample presentation would be different in a
tatic state versus the spectra of samples from the dynamic process.
herefore, a customized interpretation of repeatability is provided
o demonstrate the repeatability of determining the end point,
hich is more important for this application rather than repeata-

ility of measurement on the same sample.
3.3.6.1.1. Custom developed criteria for assessing end point

repeatability” for a method developed in-line on a dynamic system.
he NIR method was developed to monitor the moisture content
t the end of a drying operation and ultimately control the end of
he process. Once the water predicted by NIR had reached the end
oint value, the drying process would stop accordingly. Repeatabil-

ty is of paramount importance at this stage. If the method was not
epeatable, the consecutive prediction could randomly fall above
r below the end point values and thus the control strategy would
ail.

Due to the lack of procedures and guidelines to define how to
ssess the repeatability for end point methods applied to dynamic
volving systems, a customized interpretation of repeatability was
stablished. Thus, repeatability was interpreted as the precision
o estimate the end point in a clear and unambiguous manner. A
imulated example is shown in Fig. 7. In the upper-plot this is repre-
ented by the predicted values of a non-repeatable method. When
he end point (discontinuous line) is reached, the successive pre-
ictions fall above and below the specification limit. However, the

ower-plot indicates the predictions of a method demonstrating
epeatability. This is because when the end point is reached, suc-
essive predictions systematically fall within the specification limit
nd the end point of the batch can be clearly and unambiguously
etermined.

In evolving systems in which an analytical property of interest
s monitored in-line, the variability due to the method of mea-

urement cannot be independently estimated from the intrinsic
rocess variability. The proposed method for assessing repeatabil-

ty ensured that both sources of variability are under control, or in
ther words, that the method of measurement is repeatable and
hat the process evolved homogenously.
7.38 Inlet air volume (m /h) 708 1863
0.25 Differential pressure in bowl (kPa) 0.53 1.01
0.38 Differential pressure in filter (kPa) 0.43 1.51
0.26 Manufacture site A B

To assess the repeatability, the first predicted value below the
specification limit was identified as well as the subsequent five pre-
dictions which were weighted according to the following criteria:

• A weight of 1 was given if the predicted value was below specifi-
cation.

• A weight of 0 was given if the predicted value was above specifi-
cation.

The repeatability around the end point was measured as the
ratio “sum of weights divided into five”. In that way, for the non-
repeatable example of Fig. 7, the repeatability around the end point
is 0.4 = 2/5. Whereas for the repeatable example, it is 1.0 = 5/5.

The repeatability of determining the end point was assessed in
five randomly selected batches. The repeatability achieved around
the end point was 100% in the five cases, which means that the end
Fig. 7. Theoretical examples of non-repeatable (upper-plot) and repeatable (lower-
plot) methods applied to determine the end point of a batch process. Simulated
data.
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Fig. 8. The dark blue line represents the LOD% (w/w) predicted by the NIR used
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redicted by the NIR with the transferred model (instrument 2). The reference values
re shown in red (For interpretation of the references to colour in this figure legend,
he reader is referred to the web version of this article.).

ess will only be deemed completed after three consecutive LOD%
w/w) predicted values had reached the desired end point”.

.3.6.2. Reproducibility. Reproducibility expresses the precision
etween laboratories (collaborative studies, usually applied to
tandardization of methodology).

After validation and continuous verification of the performance
f the method, this application was transferred to a similar spec-
rometer from the same vendor, although the model type was
ifferent (FTPA 2000 Series Type 263). During manufacture of two
ull-scale commercial batches, NIR data were collected on both
pectrometers at the same time. The validated chemometric model
as loaded on each NIR system allowing real-time predictions of

OD% (w/w) during each batch. Samples were also taken at regular
ntervals during the drying process for LOD% (w/w) measurement
y the reference method.

Since the sampling rates between the two NIR instruments were
ot identical, three criteria were defined to assess method equiva-

ence:

An appropriate initial statistical “visualisation approach”
between both instruments’ collected data.
An appropriate statistical “differences from the mean” test
between both instruments’ predicted data.
An appropriate statistical “t-test for time-aligned and paired
data” between both instruments’ predicted data.

The performance of the method for each instrument was found
o be equivalent and satisfied the three pre-defined criteria men-
ioned above. Thus, the method was successfully transferred.
dditionally, Fig. 8 shows the LOD% (w/w) predicted by the NIR
sed to build the Model (instrument 1) along with the LOD% (w/w)
redicted by the NIR with the transferred model (instrument 2). The
eference LOD% (w/w) values are shown as red points. This demon-
trates a close agreement between the three determinations.

.4. Parallel testing
Post-validation, the NIR method was applied in-line to monitor
he drying end point of 12 additional batches that were not used
ither during calibration or validation. However, the manufactur-
ng process was not controlled by the NIR predictions but by the
onventional end point based on product temperature within the
Fig. 9. LOD% (w/w) evolution during drying predicted by the NIR model.

drying bowl. Fig. 9 shows a typical drying profile of one of those
batches. Crosses represent LOD% (w/w) predicted values outside
the linear range of the model. The predictions within the linear
range are represented by circles, the full circles are the LOD% (w/w)
values determined by the reference method. The end point spec-
ification is shown by the discontinuous horizontal line. A good
agreement between the values predicted by NIR and those pre-
dicted by the LOD balance was observed for parallel testing.

It is noteworthy to discuss the local maximum in the LOD% (w/w)
predicted value at around the 33rd spectra from the start of drying.
This peak in the drying profile is observed in all the batches and it
is caused by a pre-programmed filter shake (filter socks at the very
top of the drying vessel located in the expansion chamber). When
the filter shake is triggered, the product entrapped in the filters
dislodges and then falls back down into the product bowl to mix
with the major portion of the product. As the drying conditions are
milder in the upper part of the bowl, the water content of the prod-
uct in the filters is higher than the water of the fluidised product
within the product bowl. As a result of the mixing, the profile of
the LOD% (w/w) predicted by NIR shows a relative maximum. The
study of the perturbation introduced by the filter shake event on
the LOD% (w/w) values predicted by NIR provides important infor-
mation to understand the dynamic of the process and the overall
drying kinetics unique to this product and process.

If the predictions by NIR had been used to control the end of the
process, the batch would have stopped at time 44 (a.u.) – that is
when three consecutive values had reached the specification limit.
However, with the stop criteria based on product temperature, the
batch was stopped at time 50 (a.u.). Clearly for this batch, if the NIR
method had been used to control the end of the process, a saving
of 12% in drying time would have been achieved.

Fig. 10 shows the end of drying LOD% (w/w) values that would
have been achieved if NIR had been used to stop the drying process
(left box plot) and the final LOD% (w/w) (right box plot) for the 12
batches in the parallel testing campaign. As can been seen, if NIR
had been used to stop the drying process, not only the mean of the
12 batches would have been closer to the drying specification, 1.2%
(w/w), but also the end point would have been more consistent than
with the conventional control mode, which is based on product

temperature.

Finally, if NIR had been used to control the end point, the batches
would have been released in real-time for down-stream manufac-
turing. With the traditional operational mode, the batch is retained
until the final sample is extracted and the result from the analy-
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ig. 10. Box plot with the end of drying LOD% (w/w) values that would have been
chieved if NIR had been used to stop the drying process (left plot) and the final end
f drying values obtained (right plot).

is is obtained. The “conventional procedure” implies not only a
onsiderable increment in manufacturing time and labour, but also
potential risk of over-drying the granules retained in the dry-

ng bowl, whilst the off-line LOD% (w/w) measurement is taken
nd determined. However, the validated NIR application is now
outinely used to realise these benefits.

. Conclusions

A Partial Least Square model based on Near Infrared spectra and
oss on drying measurements was built in order to determine in-
ine, the drying end point of a fluidised drying process. The model

as developed exclusively with samples taken from batches man-
factured at full commercial scale. The predictions of LOD% (w/w)
rom the NIR model were similar to the reference method.

After development, the method was validated according to the
ocal procedures and external guidelines. However, a customized
nterpretation of some elements of the guidelines was required
o assess the precision around the end point. The goodness of the
esults obtained upon assessment of the main analytical properties,
dvanced the model toward in-line implementation in a monitor-
ng mode.

From an analytical perspective, the precision of the determina-
ion at the drying end point provided by NIR was also four times
reater than the precision of the reference method.

During parallel testing of the model, the advantages of using

IR were undoubtedly revealed. The NIR predictions were closer

o the end point specification limit (i.e. not excessively over dried).
herefore, this would have resulted in an average saving in drying
ime of around 10% if NIR had been used as the primary method for
ontrol during parallel testing.

[

[

d Biomedical Analysis 54 (2011) 13–20

This saving is now realised since the NIR model is implemented
in-line to control the drying end point in real-time for commer-
cial production batches of an FDA and EMA approved, solid, oral
medicine.
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